PakAli memiliki Penghasilan sebesar Rp. 6.000.000 Perbulan. Penghasilan tersebut digunakan untuk kebutuhan sehari hari sebanyak 2/3 bagian, untuk pendidikan anak-anaknya sebanyak 1/5 bagian, dan sisanya untuk tabungan. Besar uang yang ditabung pak Ali setiap bulan adalah . A. Rp. 2.800.000. B. Rp. 2.000.000. C. Rp. 1.600.000. D. Rp. 800.000 Mathpresso Yongjae Lee ADDRESS 17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul อีเมล PakAli Memilih program tabungan 3 in 1 Prudential. Dengan Kondisi yang sama : Bulan Ke. Prudential akan menabungkan sebesar 2juta rupiah sampai usia pak Ali 65 tahun, tabungan tersebut bisa dipergunakan pak Ali untuk tabungan pendidikan anaknya dan dana Pensiun. (walupun dengan keajaiban-nya pak Ali sembuh total, Prudential akan tetap
Ali memiliki tabungan sebesar Rp lima hari kemudian Ali harus mengambil tabungannya sebesar Rp sisa tabungan Ali sekarang adalah....
Prudentialtelah menyediakan jasa asuransi jiwa di Inggris selama lebih dari 150 tahun dan memiliki produk dana jangka panjang terbesar di Inggris selama lebih dari satu abad. Saat ini (per 31 Desember 2007), Prudential memiliki lebih dari 21 juta nasabah di seluruh dunia dan mengelola dana lebih dari US$ 530 milyar (Rp. 4.870 trilyun).
Latihan Soal Online - Latihan Soal SD - Latihan Soal SMP - Latihan Soal SMA Kategori Semua Soal ★ SMP Kelas 9 / Ujian Sekolah Matematika SMP Kelas 9Pak Ali memiliki Penghasilan sebesar Rp. Perbulan. Penghasilan tersebut digunakan untuk kebutuhan sehari hari sebanyak 2/3​ bagian, untuk pendidikan anak-anaknya sebanyak 1/5​ bagian, dan sisanya untuk tabungan. Besar uang yang ditabung pak Ali setiap bulan adalah ….A. Rp. Rp. Rp. Rp. jawaban kamu A B C D E Latihan Soal SD Kelas 1Latihan Soal SD Kelas 2Latihan Soal SD Kelas 3Latihan Soal SD Kelas 4Latihan Soal SD Kelas 5Latihan Soal SD Kelas 6Latihan Soal SMP Kelas 7Latihan Soal SMP Kelas 8Latihan Soal SMP Kelas 9Latihan Soal SMA Kelas 10Latihan Soal SMA Kelas 11Latihan Soal SMA Kelas 12Preview soal lainnya Pahlawan - Bahasa Jawa SD Kelas 3 › Lihat soalSawise Indonesia merdeka Ki Hajar Dewantara dadi . . . .A. Menteri KeuanganB. Menteri ekonomiC. Menteri PendidikanD. Menteri Pertanian Ujian Nasional Bahasa Indonesia SMA Kelas 12 Tahun 2017 Paket 2 › Lihat soalKemustahilan yang terdapat dalam kutipan tersebut adalah…a. Sekawanan burung tekukur menerbangkan jaring yang berisi teman-temannya yang terjeratb. Sekawanan burung tekukur memakan umpan yang ditebarkan pemburu di sekeliling jaringc. Dalam sekawanan burung tekukur terdapat seekor burung sebagai rajanyad. Raja tekukur ikut terbang rakyatnya dan terjerat jaring pemburue. Seorang mempunyai pikiran yang cerdik untuk melepaskan rakyatnya dari kebinasaan Materi Latihan Soal LainnyaUlangan TIK SMP Kelas 7PAI Semester 2 Genap SD Kelas 1PTS IPS SMP Kelas 7 Semester 1 GanjilUlangan Tema 5 SD Kelas 6Penilaian Akhir Semester 2 Genap Prakarya SMP Kelas 8PAI Semester 2 Genap SD Kelas 4Pokok Pokok Pikiran - PPKn SMP Kelas 9PTS IPA Semester Ganjil SMP Kelas 8Tema 4 - SD Kelas 3PTS Prakarya SMA Kelas 12Cara Menggunakan Baca dan cermati soal baik-baik, lalu pilih salah satu jawaban yang kamu anggap benar dengan mengklik / tap pilihan yang tersedia. Tentang Soal Online adalah website yang berisi tentang latihan soal mulai dari soal SD / MI Sederajat, SMP / MTs sederajat, SMA / MA Sederajat hingga umum. Website ini hadir dalam rangka ikut berpartisipasi dalam misi mencerdaskan manusia Indonesia.
Totallaba ditahan naik sebesar 12.000.000, maka seharusnya terdapat 6.000.000 lembar saham beredar. Dengan nilai buku sebesar 40 per saham, total ekuitas biasa harus sebesar: = 40(6.000.000) = 240.000.000. Perusahaan memiliki uang sebesar 120.000.000, maka rasio utang perusahaan seharusnya sebesar 33,3% dengan cara menghitungnya
BerandaAli menabung uang sebesar di sebuah...PertanyaanAli menabung uang sebesar di sebuah bank. Setelah 8 bulan jumlah tabungannya menjadi . Besar bunga dari tabungan Ali adalah ...Ali menabung uang sebesar di sebuah bank. Setelah 8 bulan jumlah tabungannya menjadi . Besar bunga dari tabungan Ali adalah ...HEMahasiswa/Alumni Universitas Pendidikan IndonesiaJawabanjawaban yang tepat adalah yang tepat adalah bungadari tabungan Ali dapat ditentukan sebagai berikut. Besar bunga tabungan Ali adalah Oleh karena itu, jawaban yang tepat adalah bunga dari tabungan Ali dapat ditentukan sebagai berikut. Besar bunga tabungan Ali adalah Oleh karena itu, jawaban yang tepat adalah A. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!115Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Halini seperti yang tercantum dalam surat Ali Imran ayat 97 yang berbunyi; Setelah memiliki tabungan, selanjutnya Anda diwajibkan untuk menandatangani surat pernyataan memenuhi persyaratan pendaftaran haji yang diterbitkan oleh Kementerian Agama. Membayar DP sebesar USD 4.500 (Nomor Porsi Kementrian Agama). Sedangkan langkah
Dea7195 Dea7195 Matematika Sekolah Menengah Pertama terjawab Ali memiliki tabungan sebesar Lima hari kemudian Ali harus mengambil tabungannya sebesar sisa tabungan Ali sekarang adalah.... A. kk jawab bsk mau di kumpul dengan penjelasan nya​ Iklan Iklan michaelhutauruk278 michaelhutauruk278 Jawab dengan langkah-langkahKARENA Iklan Iklan kartikasari0608 kartikasari0608 Jawabanjawaban BPenjelasan dengan langkah-langkah Iklan Iklan Pertanyaan baru di Matematika Diketahui sudut A,B,c . Sudut B 65 derajat C 70 derajat . Berapa derajat sudut A ? harga 2 kg bawang merah adalah 50 000 maka harga 5 kg bawang merah adalah​ Sebuah proyek direncanakan selesai dalam waktu 25 hari proyek di percepat 5 hari tambahan pekerja yang di perlukan adalah A. 10 B. 20 C. 30 D. 40 8. lukislah sudut 30°​ sebuah drum minyak goreng berbentuk tabung ukuran diameternya 49 cm dan tingginya 80 cm jika harga 1 liter minyak tersebut adalah Rp maka hi … tunglah harga 5 drum minyak tersebut​ Sebelumnya Berikutnya
Untukkami memperkenalkan sebuah tabungan yang sangat berguna buat anda semua, perhatikan histori berikut di bawah ini : REKENING PAK ALI Ada sebuah kasus misal : P.Ali usia 30 th merencanakan untuk pensiun di usia 55 th, untuk itu P.Ali mulai sekarang menyisihkan uang 1 jt / bln ( 12 jt / th ) dan di tabungkan ke sebuah rekening selama 10 th.
Ali memiliki tabungan sebesar Lima hari kemudian Ali harus mengambil tabungannya sebesar sisa tabungan Ali sekarang adalah... tolong kak bantu jawab dibuat PTS​ Penjelasan dengan langkah-langkahDiketahui Tabungan awal = Rp. dari tabungan = Rp. Sisa tabungan?Jawab Tabungan awal - uang yang diambilRp. - Rp. = Rp. sisa tabungan tersebut sebesar Rp. kalau salah

ContohNilai akhir tabungan Nilai tabungan pada saat tertentu 67 33 Persamaan from MATH 101 at Padjadjaran University 80.000.000,- . Untuk pembelian secara kredit, Pak Ali harus menyiapkan uang muka sebesar 20% dan melunasinya dalam waktu 36 kali angsuran dengan Ibu Aisyah ingin memiliki uang sebesar Rp. 500.000.000,- pada saat ia

10. Ali memiliki tabungan sebesar Rp. Limahari kemudian, Ali harusmengambil tabungan sebesarRp. Maka sisatabungan Ali adalah...O A. Rp. B. Rp. C. Rp. D. Rp. JawabanB. Rp kalau ada salah

Prudentialakan menabungkan sebesar Rp. 2 juta (sesuai dengan besarnya tabungan Pak Ali sebelum beliau terkena kondisi kritis) hingga usia 65 tahun. Tabungan tersebut dapat digunakan untuk tabungan pendidikan anaknya dan dana pensiun. Dengan manfaat-manfaat yang didapat Pak Ali jika beliau memilih alternatif no.3 yaitu Tabungan 3in1

Time Value of Money TVMNilai waktu uang adalah manfaat lebih besar dari menerima uang sekarang daripada nanti. Ini didirikan berdasarkan preferensi waktu. Dalam bahasa Indonesia, Time Value of Money adalah nilai waktu dari RP 1 juta sekarang nilainya lebih berharga daripada Rp 1 juta di masa yang akan datang. Konsep nilai waktu uang dilakukan dengan cara membawa seluruh nilai pendapatan dan pengeluaran proyek dimasa yang akan datang kembali ke saat sekarang untuk itu kita harus memiliki asumsi akan suatu tingkat suku bunga tertentu yang melebihi tingkat inflasi sebagai suatu beban kesempatan. Menggunakan suku bunga yang tinggi apabila resiko yang harus ditanggung cukup besar. Jangan menambah resiko kecuali mendapatkan kompensasi tambahan time value of money TVM atau nilai uang atas waktu banyak digunakan dalam manajemen keuangan perusahaan corporate finance dan konsep perencanaan keuangan personal financial planning. Setidaknya ada tiga hal yang perlu Anda ketahui dalam konsep nilai uang atas waktu yaituNilai Uang Sekarang Present ValueNilai Uang yang Akan Datang Future ValueCicilan atau Pembayaran Bertahap PaymentTime Value of Money. Nilai sekarang $ 100 tahun ke depan. Kurva mewakili tingkat diskon konstan 2%, 3%, 5%, dan 7%.Rumus-Rumus Time Value of Money TVMBunga adalah jumlah yang dibayarkan akibat kita menggunakan uang pinjaman. Dalam suatu analisa kita dapat menggunakan notasii = Interest atau bunga % n = jangka waktu tahun P = Present value present worth adalah nilai uang pada saat dimulai proyek pada saat sekarang yaitu pembayaran yang hanya berlangsung sekali tahun ke–0Rumus present value nilai hari iniPV = FV 1 + r -nFV = Future Value Nilai Pada akhir tahun ke n PV = Nilai Sekarang Nilai pada tahun ke 0 r = Suku Bunga n = Waktu tahunRumus di atas mengasumsikan bahwa bunga digandakan hanya sekali dalam setahun, jika bunga digandakan setiap hari, maka rumusnya menjadi PV = FV 1 + r / 360-360nRumus future valueF = Future value future worth adalah pembayaran pada saat periode yang akan datang. Yaitu pembayaran yang hanya berlangsung sekali pada tahun ke-nKeterangan FV Nilai pada masa yang akan datang Po Nilai pada saat ini i Tingkat suku bunga n Jangka waktuatau rumus tersebut dapat disederhanakan dengan melihat tabelFV = PV FVIF tahun,bunga Tabel Future Value FVIF US $N10%15%20%30%40%50% = Annual cash flow adalah pembayaran seri tabungan yaitu pembayaran yang terjadi berkali-kali tiap tahun dalam jumlah yang sama besar dilakukan tahun ke-1 sampai tahun ke-n sebesar AG = Gradient yaitu pembayaran yang terjadi berkali-kali tiap tahun naik dengan kenaikan yang sama atau menurun secara seragamPengertian EkivalensiDalam Time Value of Money, pengertian ekivalensi adalah nilai uang yang berbeda pada waktu yang berbeda akan tetapi secara finansial mempunyai nilai yang sama. Kesamaan nilai finansial tersebut dapat ditunjukkan jika nilai uang dikonversikan dihitung pada satu waktu yang tersebut sulit untuk dimungkinkan dalam studi ekonomi, maka dibuat dasar ekuivalensi berdasarkanTingkat suku bungaJumlah uang yang terlibatWaktu penerimaan/pengeluaran uangCara pembayaran kembali modal yang diinvestasikan dalam penutupan modal awalDengan kata lain, dalam dua diagram cashflow disebut ekuivalen pada suatu tingkat bunga tertentu, jika dan hanya jika, keduanya mempunyai nilai worth yang sama pada tingkat bunga harus dihitung untuk periode waktu yang sama paling banyak digunakan adalah waktu sekarang Present Worth, tetapi setiap titik pada rentang waktu yang ada dapat digunakanEkuivalensi tergantung pada tingkat bunga yang diberikan cashflow tidak akan ekuivalen pada tingkay bunga yamg berbedaEkuivalensi cashflow tidak harus berarti bahwa pemilihan cashflow tidak penting. Pasti ada alasan mengapa suatu cashflow lebih dipilih dari yang lainnya [3]Contoh kasus ekuivalensiBerapa present worth dari pembayaran Rp. 3000 yang akan anda terima 5 tahun dari sekarang, jika anda dapat menginvestasikan uang anda pada tingkat bunga 8% per tahun? PenyelesaianJadi cashflow dengan nilai Rp. 2042 saat ini ekuivalen dengan cashflow dengan nilai 3000 pada akhir tahun kelima pada tingkat bunga 8%.PRESENT WORTH ANALYSIS Analisa nilai hari iniPresent Worth adalah nilai ekuivalen pada saat sekarang waktu 0. Metode PW ini seringkali dipakai terlebih dahulu daripada metode lain karena biasanya relatif lebih mudah menilai suatu proyek pada saat 1 Perusahaan mempertimbangkan penambahan suatu alat pada mesin produksi guna mengurangi biaya pengeluaran, yakni penambahan alat A dan penambahan alat B. Kedua alat tersebut masing-masing $ dan mempunyai umur efektif 5 tahun dengan tanpa nilai sisa. Pengurangan biaya dengan penambahan Alat A adalah $300 per tahun. Pengurangan biaya dengan penambahan alat B $400 pada tahun pertaman dan menurun $50 setiap tahunnya. Dengan i=7% alat mana yang dipilih?Penyelesaian Harga masing-masing alat A dan B sama, sehingga tidak menjadi pertimbangan. Cashflow masing-masing alatPW benefit of A = 300 P/A,7%,5 = 300 4,100 = $ PW benefit of B = 400 P/A,7%,5 – 50 P/G,7%,5 = 400 4,100 – 50 7,647 = $ B menghasilkan benefit yang lebih besar sehingga untuk selama 5 tahun menjadi alternatif yang menguntungkan, bahkan di tahun pertama dan kedua menghasilkan return yang lebih besar dari alat Present Value Dengan Bunga TunggalKita dapat menggunakan rumus di bawah ini PV = FV / 1 + inKeterangan PV = nilai saat ini FV = nilai future value i = bunga n = jangka waktuPerhitungan Present Value Dengan Bunga MajemukPV = FV / 1 + i/mm x nKeterangan FV = nilai future value PV = nilai saat ini i = bunga n = jangka waktu m = periode yang dimajemukkanBaca juga ? Bunga Majemuk dalam Keuangan Compound Interest – Rumus, Penjelasan, Contoh Soal dan JawabanAnnual Cash Flow AnalysisAnnual cash flow analysis merupakan perhitungan tentang aliran uang tahunan dalam suatu perusahaan. Kondisi cash flow suatu perusahaan dapat menentukan kelangsungan hidup perusahaan. Cash flow dihitung untuk memperkirakan kemungkinan yang belum terjadi. Dalam bisnis pelayaran cash flow berguna untuk menentukan apakah kapal yang beroperasi bisa mendatangkan keuntungan selama umur ekonomis kapal. Cash flow ini juga sangat penting dalam perhitungan semua biaya untuk satu kapal yang terdiri dari bermacam-macam jenisnya. Serta pendapatan yang adalah serangkaian pembayaran dalam jumlah yang tetap untuk suatu jangka waktu tertentu. Anuitas atau Annuity merupakan perhitunga bunga dengan mengalikan presentase bunga dikalikan dengan saldo akhir pinjaman secara angsuran perbulan dihitung dengan membagi angsuran tahunan dibagi menjadi 12 bulan. Dalam metode anuitas ini, total angsuran pertahun akan sama, sementara angsuran pokok dan angsuran bunga akan berubah. Angsuran pokok akan meningkat setiap tahun dan angsuran bunga akan menurun, karena bunga dihitung dari saldo akhir angsuran dapat dihitung dengan menggunakan rumus sebagai berikutA = M x i 1- 1+ iA = A 12A = Total angsuran pertahun M = Jumlah kredit i = Suku bunga pertahun n = Jangka waktu kredit Ab = Total angsuran perbulanSebagai contoh, Jono mendapat kredit dari bank ABC sebesar dalam jangka waktu 5 tahun. Suku bunga kredit 12% pertahun anuitas, dan angsuran dilakukan setiap bulan. Hitunglah jumlah angsuran total setiap tahun sebesar dan angsuran total perbulan adalah nilai demikian didapat dengan menggunakan rumus diatas dan perhitungannya sebagai berikutA = x 12% 1 – 1 + 12% A = Ab = 12 Ab = rumus anuitas dapat diperoleh angsuran pertahun sama dengan Sementara angsuran perbulan dihitung dengan membagi angsuran pertahun dengan 12 bulan sehingga angsuran perbulan sama dengan Dan angsuran pokok akan dihitung dengan mengurangkan angsuran total dengan angsuran 2 jenis anuitasAnuitas biasa ordinary adalah anuitas yang pembayaran atau penerimaannya terjadi pada akhir periodeAnuitas jatuh tempo due adalah anuitas yang pembayaran atau penerimaannya dilakukan di awal juga ? Cara Menghitung Bunga Pinjaman – Bunga Sederhana, Amortisasi, Flate Rate, Efektif dan Anuitas – Rumus, Contoh Soal, JawabanFuture Worth AnalysisFuture worth analysis analisis nilai masa depan didasarkan pada nilai ekuivalensi semua arus kas masuk dan arus kas keluar di akhir periode analisis pada suatu tingkat pengembalian minimum yang diinginkan MARR. Oleh karena tujuan utama dari konsep time value of money adalah untuk memaksimalkan laba masa depan, informasi ekonomis yang diperoleh dari analisis ini sangat berguna dalam situasi-situasi keputusan investasi FW alternative sama dengan PW, dimana FW = PW F/P,i%,n. Perbedaan dalam nilai ekonomis yang dihasilkan bersifat relative terhadap acuan waktu yang digunakan saat ini atau masa alternatif tunggal, jika diperoleh nilai FW ≥ 0 maka alternatif tersebut layak diterima. Sementara untuk situasi dimana terdapat lebih dari satu alternatif, maka alternatif dengan FW terbesar merupakan alternatif yang paling menarik untuk dipilih. Pada situasi dimana alternatif yang ada bersifat independent, dipilih semua alternatif yang memiliki FW ≥ Terhadap Alternatif TunggalContoh Sebuah perusahaan sedang mempertimbangkan peralatan baru seharga Rp. Dengan peralatan baru akan diperoleh penghematan sebesar Rp. per tahun selama 8 tahun. Pada akhir tahun ke-8, peralatan itu memiliki nilai jual Rp. Jika tingkat suku bunga 12% per tahun dan digunakan future worth analysis, apakah pembelian peralatan baru tersebut menguntungkan?PenyelesaianFW = 40000000 + 1000000F/A,12%,8 – 30000000F/P,12%,8 NPV = 40000000 + 100000012,29969 – 300000002,47596 NPV = karena NPV yang diperoleh < 0 maka pembelian peralatan baru tersebut tidak Pakai Sama dengan Periode AnalisisJika terdapat lebih dari satu alternatif usia pakai yang sama, analisis keputusan dapat dilakukan menggunakan periode analisis yang sama dengan usia pakai Sebuah perusahaan akan membeli sebuah mesin untuk meningkatkan pendapatan tahunannya. Dua alternatif mesin dengan usia pakai masing-masing 8 tahun ditawarkan kepada perusahaanMesinHarga Beli Rp.Keuntungan per Tahun Rp.Nilai Sisa di Akhir Usia Pakai Rp.X25000007500001000000Y35000009000001500000Menggunakan tingkat suku bunga 15% per tahun, tentukan mesin yang seharusnya X FW X = 750000F/A,15%,8 + 1000000 – 2500000F/P,15%,8 FW X = 75000013,72682 + 1000000 – 25000003,05902 FW X = 3647565Mesin Y FW Y = 900000F/A,15%,8 + 1500000 – 3500000F/P,15%,8 FW Y = 90000013,72682 + 1500000 – 35000003,05902 FW Y = 3147568Kesimpulan pilih mesin Pakai Berbeda dengan Periode AnalisisSama dengan Present Worth Analysis. Dalam situasi ini dapat digunakan asumsi perulangan atau asumsi berakhir bersamaan, tergantung pada masalah yang Sebuah perusahaan akan membeli sebuah mesin untuk meningkatkan pendapatan tahunannya. Dua alternatif mesin ditawarkan kepada perusahaanMesinUsia Pakai TahunHarga Beli Rp.Keuntungan per Tahun Rp.Nilai Sisa di Akhir Usia Pakai Rp.X825000007500001000000Y1635000009000001500000Dengan tingkat suku bunga 15% per tahun. Tentukan mesin yang seharusnya XFW X = 750000F/A,15%,16 + 1000000 + 1000000P/F,15%,8 – 2500000F/P,15%,8 – 2500000F/P,15%,16 FW X = 75000055,71747 + 1000000 + 10000003,05902 – 25000003,05902 – 25000009,35762 FW X = 14805463Mesin YFW Y = 900000F/A,15%,16 + 1500000 – 3500000F/P,15%,16 FW Y = 90000055,71747 + 1500000 – 35000009,35762 FW Y = 18894053 FW mesin Y, Rp. lebih besar dari FW mesin X, Rp. maka pilih mesin EkuivalensiMetode ekuivalen adalah metode mencari kesamaan atau kesetaraan nilai uang untuk waktu yang berbeda. Dalam perhitungan ekuivalen dibutuhkan data tentangƒ suku bunga rate of interest;ƒ jumlah uang yang terlibat;ƒ waktu penerimaan dan/atau pengeluaran uang;ƒ sifat pembayaran bunga terhadap modal yang dan kerugian Time Value of Money TVMManfaat Time Value of Money TVMManfaat time value of money adalah untuk mengetahui apakah investasi yang dilakukan dapat memberikan keuntungan atau value of money berguna untuk menghitung demikian investor dapat menganalisa apakah proyek tersebut dapat memberikan keuntungan atau investor lebih menyukai suatu proyek yang memberikan keuntungan setiap tahun dimulai tahun pertama sampai tahun berikutnya. Maka sudah jelas time value of money sangat penting untuk dipahami oleh kita semua, sangat berguna dan dibutuhkan untuk kita menilai seberapa besar nilai uang masa kini dan akan Time Value of Money TVMKerugiannya yaitu akan mengakibatkan masyarakat hanya menyimpan uangnya apbila tingkat bunga bank tinggi, karena mereka menganggap jika bunga bank tinggi maka uang yang akan mereka terima dimasa yang akan datang juga value of money tidak memperhitungkan tingkat inflasi dan dan Jawaban Time Value of Money1. Pak Budi memiliki uang Rp. yang ditabung di bank dengan bunga 10% per tahun selama 10 tahun. Pada akhir tahun ke-10 jumlah akumulasi bunganya adalah Si = 10 = Rp. untuk mencari nilai masa depan future value, FV atau nilai akhir tabungan tersebut diakhir tahun kesepuluh FV10, yaitu dengan menjumlahkan pinjaman pokok dan penghasilan FV10 = + [ = Rp. Untuk setiap tingkat bunga sederhana, maka nilai akhir untuk perhitungan akhir n periode adalahFVn = Po + Si = Po + Po in FVn = Po [1 + in]Untuk contoh diatas maka FV10 = [1 + FV10 = 1 + 1 menjadi FV10 = Rp. Kadang-kadang diketahui nilai akhir suatu deposito dengan bunga i% pertahun selama n tahun, tetapi pinjaman pokoknya2. Sebuah perusahaan memperoleh pinjaman modal dari Bank Mandiri sebesar Rp 5,000,000 untuk mebeli peralatan produksi dengan jangka waktu 5 tahun bunga yang dikenakan sebesar 18 % per tahun berapa jumlah yang harus dibayar oleh perusahaan tersebut pada akhir tahun ke 5?JawabanFV = Po 1+rn FV = Rp 5,000,000 1+ FV = Rp 11,438,789Jadi jumlah yang harus dibayarkan perusahaan kepada bank sebesar Rp 11,438,7893. Misalkan seseorang ingin mendepositokan uangnya di Bank Central Asia sebesar Rp. Jika tingkat bunga deposito adalah 8% per tahun dan dimajemukkan setiap tahun, maka menjadi berapakah investasi orang tersebut pada akhir tahun pertama, kedua, ketiga ?Pembahasan dari pertanyaan tersebut adalah FV1 = Po 1 + i = Rp. 1 + = Rp. deposito Rp. tersebut kita biarkan selama 2 tahun, maka nilai akhir tahun ke-2 adalah FV2 = FV1 1 + i = Po 1 + i1 + i = Po 1 + i2 = Rp. 1+ = = = Rp. akhir tahun ke-3 menjadi FV3 = FV2 1 + i = FV1 1 + i1 + i = Po 1 + i3 = Rp. 1+ = = = Rp. Secara umum nilai masa depan future value dari deposito pada akhir periode n adalah FVn = Po 1 + in atau FVn = Po FVIFi,nDimanaFVn = Future Value nila masa depan atau nilai yang akan datang tahun ke-n FVIFi,n = Future Value Interest Factor yaitu nilai majemuk dengan tingkat bunga i% untuk n periode. Faktor bunga tersebut sama dengan 1 + inPerhitungan nilai majemuk dengan faktor bunga tertentu untuk suatu jumlah uang ditunjukkan pada tabel 2. Tabel ini menunjukan nilai majemuk untuk contoh 3 diatas pada akhir tahun ke-1 sampai tahun Mr. Wright pergi ke Bank HSBC. Hitunglah berapa banyak Mr. Wright akan memperoleh uang dalam tabungan 8 tahun dari sekarang jika dia menanamkan $2,000 hari ini. Diketahui bunga 10% compounded; secara tahunan.DiketahuiPo= $ 2,000r = 10%n = 8 tahunDitanyaFV10%,8= ?Jawaban FVr,n= P oFVIF = Po1+rn = $ 2,000 1+0,18 = $ 2,000 2,1436 = $ 4, Jadi, Mr. David akan memperoleh uang sebanyak $ 4, Harga sepeda motor 2 tahun mendatang sebesar Rp. Tingkat bunga rata-rata 12% setahun. Berapa yang harus ditabung Agung saat ini agar dapat membelinya dua tahun mendatang, dengan asumsi 1 Bunga dimajemukkan setahun sekali 2 Bunga dimajemukkan sebulan sekaliJawabanPV = Rp. + 0,12-2 = Rp. = Rp. + 0,12/12-122 = Rp. Misalkan Anthony dihadapkan pada pilihan apaah menerima kas saan ini senilai atau tahun kemudian. Apabila bunga yang berlau selama 5 tahun adalah 18% pertahun, maka alternatif mana yang akan Anthony pilih ?JawabanTentu Anthony akan mencari berana nilai sekarang atas penerimaan lima tahun yang akan datang. Apabila bunga bank selama limatahun adalah 18% pertahun, makaNS= Xn NSFB 18%.5 = 0,4370 = demikian saudara tentunya akan lebih senang menerima lima tahun kemudian, karena memiliki nilai sekarang yang lebih besar dari alternatif pertama. Hal ini tentunya dengan asumsi bahwasanya tingkat bunga tidak akan meningkat, karena apabila tingkat bunga naik, katakan saja menjadi 22% pertahun, maka alternatif pertama menjadi lebih Orang tua saudara menjanjikan akan memberikan uang sebesar Rp. satu tahun akan datang. Sementara itu tingkat suku bunga bank yang berlaku pada saat ini adalah 8% pertahun. Timbul pertanyaan, berapakah orang tua saudara harus menyimpan uangnya dibank agar satu tahun kedepan menjadi Rp. dengan kata lain, berapa nilai sekarang uang Rp. satu tahun yang akan datang kalu tingkat bunga yang berlaku 8% pertahun ?JawabanRp = XO 1+0,08 XO = 1+0,08 = Rp. demikian nilai sekarang penerimaan kas satu tahun yang akan datang dengan bunga 8% pertahun adalah Dapat juga dikatakan bahwa kas saat ini memiliki nilai yang sama dengan satu tahun yang akan datang bila bunga yang berlaku 8% pertahun. Misalkan penerimaan tersebut akan terjadi dalam dua tahun kemudian, berapakah nilai sekarang dari penerimaan tersebut bila bunga yang berlaku tetap 8% pertahun ? = 1+0,08 = Xo tidak lain adalah nilai sekarang sejumlah penerimaan dimasa datang Xn, dengan tingkat bunga r pertahun maka secara umum dapat diformulasikan menjadi NS = Xn 1+rNS = Xn1+rSeperti halnya nilai kemudian, 1/1+r tidak lain adalah nilai sekarang faktor bunga NSFB yang dengan mudah dapat dicari dengan tabel. Namun demikian saat ini juga telah tersedia bermacam kalkulator yang dapt menghitung nilai sekarang faktor bunga tersebut, dengan demikian nilai sekarang dapat dicari dengan mengalikan penerimaan yang diharapkan dengan nilai sekarang faktor bunga . sehingga persamaan diatas dapat disederhanakan menjadi NS = Xn Misalkan tahun 2000, Pak Michael membeli tanah seluas 1000 m2 dengan harga per meter atau Pada tahun 20013, tanah tersebut ditawar orang untuk dibeli dan dijadikan gudang barang elektronik dengah harga per menggunakan rumus Future Value, anda akan dapat mengetahui berapa tingkat pengembalian per tahun atas investasi Pak Michael tersebut diatas dalam angka relatif atau persentase. Selanjutnya tingkat pengembalian dalam bentuk persentase tadi, akan bisa langsung dibandingkan dengan benchmark return investasi dalam pasar uang dan investasi tingkat kenaikan harga IHSG per tahun. Misalkan rata-rata market return IHSG dalam 13 tahun terakhir adalah 10% per kasus ini, Anda mendapat 2 manfaat sekaligus dari aplikasi konsep time value of money yaitu mengetahui berapa besarnya tingkat pengembalian Pak Michael dari investasi tanahnya dan langsung bisa mengukur kinerja tingkat pengembalian program investasi ini dengan market return IHSG. Sehingga dengan demikian Anda memiliki dasar untuk menjelaskan bahwa pilihan investasi dalam bentuk tanah merupakan keputusan yang tepat atau mari kita lengkapi perhitungan Future Value dari hasil investasi Pak PV = FV = N = 13Ditanya = rJawaban FV = PV x 1 + r^n M = jt x 1+x^13 M = jt x 1 + M = Rp. 1 MBerarti tingkat pengembalian per tahun adalah sebesar atau sehingga apabila dibandingkan dengan market return, ternyata kinerja investasi dalam tanah tidak begitu menggembirakan karena hasilnya menunjukkan bahwa market returnlebih besar Menghitung Time Value of Money “FUTURE VALUE”nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan. Jumlah uang Rp 5 000 000 000. Jumlah tahun 10. Inflasi tahunan 7%. Hitung Future Value-nya dalam 10 tahun mendatang!JawabanGunakan rumusFV = Po 1+in Keterangan FV Nilai pada masa yang akan datang Po Nilai pada saat ini i Tingkat suku bunga n Jangka waktuDataJumlah Uang Rp Tahun 10 tahunInflasi Tahunan 7 persen %Future Value Time Value of MoneyNilai 10 tahun MendatangRp Menghitung Time Value of Money “FUTURE VALUE” nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan. Jumlah uang Rp 5 000 000 000. Jumlah tahun 20. Inflasi tahunan 7%. Hitung Future Value-nya dalam 20 tahun mendatang!JawabanGunakan rumusFV = Po 1+in Keterangan FV Nilai pada masa yang akan datang Po Nilai pada saat ini i Tingkat suku bunga n Jangka waktuMenghitung nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan, sebagai berikutDataJumlah Uang Rp Tahun 20 tahunInflasi Tahunan 7 persen %Future Value Time Value of MoneyNilai 20 tahun MendatangRp Menghitung Time Value of Money “FUTURE VALUE” nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan. Jumlah uang Rp 5 000 000 000. Jumlah tahun 30. Inflasi tahunan 7%. Hitung Future Value-nya dalam 30 tahun mendatang!JawabanGunakan rumusFV = Po 1+in Keterangan FV Nilai pada masa yang akan datang Po Nilai pada saat ini i Tingkat suku bunga n Jangka waktuMenghitung nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan, sebagai berikutDataJumlah Uang Rp Tahun 30 tahunInflasi Tahunan 7 persen %Future Value Time Value of MoneyNilai 30 tahun MendatangRp Menghitung Time Value of Money “FUTURE VALUE” nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan. Jumlah uang Rp 5 000 000 000. Jumlah tahun 50. Inflasi tahunan 7%. Hitung Future Value-nya dalam 50 tahun mendatang!JawabanGunakan rumusFV = Po 1+in Keterangan FV Nilai pada masa yang akan datang Po Nilai pada saat ini i Tingkat suku bunga n Jangka waktuMenghitung nilai masa depan sejumlah uang berdasar asumsi inflasi tahunan, sebagai berikutDataJumlah Uang Rp Tahun 50 tahunInflasi Tahunan 7 persen %Future ValueNilai 50 tahun MendatangRp Jika Adi menginvestasikan uang sebesar Berapa uang yang akan diperoleh dari investasi tersebut selama dua tahun dengan suku bunga simple interest 5 persen per tahun?JawabanPresent value adalah uang pokok saat ini, yaitu satu juta rupiah. Dengan bunga i sebesar 5% atau 0,05 dan n = 2 tahun. Mari kita masukkan ke rumus di atas sebagai value = 1000000 x [1+0,05 x 2] = Rp value uang yang diinvestasikan selama dua tahun adalah b. Rumus future value dengan annual compound interest sebagai berikut. Future Value = PV x 1+inKeteranganPV Present value, uang yang diinvestasikan saat ini i suku bunga n periode14. Budi memiliki tabungan sebesar Berapa uang yang akan diperoleh dari investasi selama dua tahun dengan suku bunga 5% per tahun dan compound interest tahunan?JawabanPresent value adalah uang awal pada masa sekarang sebesar satu juta. Dengan bunga i sebesar 5% atau 0,05 dan n = 2 tahun. Perhitungannya sebagai value = 1,000,000 x 1+0,052 = 2,100,000Dengan demikian, future value dari uang tabungan dalam waktu dua tahun adalah Rp 2,100,000 Supaya tidak salah dalam menggunakan rumus future value maka perhatikan suku bunga setiap periode dan jumlah periode investasi. Periode investasi harus sesuai dengan waktu investasi berbunga majemuk compounded. Bunga yang diperoleh untuk hitungan waktu adalah tahun, begitu pula dengan bunga yang memberikan bunga bulanan berbeda dengan bunga tahunan sehingga nilai n yang dimasukkan ke rumus juga berubah menjadi periode investasi dalam waktu bulan. Suku bunga selalu berdasarkan pada present value atau investasi pokok present value, sedangkan compound interest artinya present value tumbuh secara menghitung future value maka ada keuntungan tersendiri bagi investor. Namun, hal yang harus diingat adalah teori future value tidak bisa mengikutsertakan faktor inflasi dan tidak menyesuaikan nilai uang pada masa depan dengan adanya inflasi. Suku bunga dan nilai mata uang yang naik atau turun akan memengaruhi nilai uang dan aset pada masa LainnyaCara Menghitung IRR Internal Rate of Return dan NPV Net Present Value – Contoh Soal beserta JawabannyaIFRS dan GAAP – Perbedaan Antara Akuntansi IFRS dan GAAPBreak Even Point Titik Impas atau Balik Modal Rumus, Contoh Soal dan JawabanReturn On Investment ROI Pengembalian Investasi Rumus, Contoh Soal dan JawabanRumus Laporan Keuangan Modal, Laba Rugi, Neraca Financial statement dalam AkuntansiAkuntansi Definisi, Pengertian, Siklus Akuntansi Laporan Keuangan Perusahaan Jasa dan DagangIstilah Akuntansi Inggris-IndonesiaPasar Modal Capital Market – Pengertian, Jenis, Fungsi, Risiko, Manfaat dan ContohPasar Keuangan – Definisi, Pengertian, Jenis dan ContohCara Menganalisa Saham Seperti Ahli Pasar Saham ProfesionalBitcoin Uang Elektronik, Informasi, Sejarah, Transaksi, Cara Daftar Bitcoin Indonesia‎Uang Rupiah Negara Indonesia – Sejarah Nilai Tukar Rupiah Terhadap USDTempat Wisata Yang Harus Dikunjungi Di Tokyo – Top 10 Obyek Wisata Yang Harus Anda KunjungiCara Membeli Tiket Pesawat Murah Secara Online Untuk Liburan Atau BisnisTibet Adalah Provinsi Cina – Sejarah Dan BudayaPuncak Gunung Tertinggi Di Dunia dimana?TOP 10 Gempa Bumi Terdahsyat Di DuniaApakah Matahari Berputar Mengelilingi Pada Dirinya Sendiri?Test IPA Planet Apa Yang Terdekat Dengan Matahari?10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!TOP 10 Virus Paling Mematikan ManusiaUnduh / Download Aplikasi HP Pinter PandaiRespons “Ooo begitu ya…” akan lebih sering terdengar jika Anda mengunduh aplikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber bacaan Graduate Tutor, Accounting Explained, Get Objects
Padasaat diambil uang Ali menjadi Rp.2.080.000,00. Lama Ali menabung adalah . A. 6 bulan B. 7 bulan C. 8 bulan D. 9 bulan Penyelesaian: Hal pertama yang dicari adalah bunga tabungan yang didapatkan oleh ali selama menabung. Bunga = tabungan akhir – tabungan awal Bunga = 2.080.000 – 2.000.000 Bunga = 80.000 Bunga = a . p . M
BerandaAli menabung di bank sebesar dengan...PertanyaanAli menabung di bank sebesar dengan suku bunga tunggal 6% pertahun. Pada saat diambil uang Ali menjadi Lama Ali menabung adalah ....Ali menabung di bank sebesar dengan suku bunga tunggal 6% pertahun. Pada saat diambil uang Ali menjadi Lama Ali menabung adalah ....Jawabanlamanya Ali menabung adalah 8 Ali menabung adalah 8 lamanya Ali menabung adalah 8 bulan. Jadi, lamanya Ali menabung adalah 8 bulan. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!376Yuk, beri rating untuk berterima kasih pada penjawab soal!JlJust lim Ini yang aku cari! Pembahasan lengkap banget Makasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
.
  • l4tsexy265.pages.dev/783
  • l4tsexy265.pages.dev/117
  • l4tsexy265.pages.dev/509
  • l4tsexy265.pages.dev/446
  • l4tsexy265.pages.dev/948
  • l4tsexy265.pages.dev/339
  • l4tsexy265.pages.dev/303
  • l4tsexy265.pages.dev/474
  • l4tsexy265.pages.dev/535
  • l4tsexy265.pages.dev/332
  • l4tsexy265.pages.dev/202
  • l4tsexy265.pages.dev/429
  • l4tsexy265.pages.dev/844
  • l4tsexy265.pages.dev/874
  • l4tsexy265.pages.dev/737
  • ali memiliki tabungan sebesar